Fatigue Analysis Screening, Method B according to ASME Section VIII div 2 Clause 5.5.2.4

The fatigue screening allows to determine if a fatigue analysis is required as part of the vessel design. If the screening is satisfied, then a fatigue analysis is not required as part of the vessel design. *Online version: https://nextgen.sant-ambrogio.it/KB137109* Latest update: 04 ott 2022

With NextGen it is possible to perform a fatigue screening procedure for projects according to ASME Section VIII div 2. The fatigue screening allows to determine if a fatigue analysis is required as part of the vessel design. If the screening is satisfied, then a fatigue analysis is not required as part of the vessel design.

In order to perform the fatigue screening, the user must perform two main operations:

- Define on Item level the inputs for step 3 and 4 of the fatigue screening procedure
- Define on Component level the inputs for step 5 to 8

The definition of the Item level inputs can be done in Item properties (File > Item properties > Fatigue). Fatigue screening detail fields appear once "Enable fatigue screening" is enabled:

tem Properties					1
Vessel 📳 Design conditions		_			4.3
inable fatigue screening	(
Number of full range pressure cycles including startup and shutdown	NAFP	20020	*		
Average temperature to be considered in step 3 of the screening procedure		200	-	•c	۲
Maximum range of pressure fluctuation during normal operation	ΔP	0.25	-	MPa	
lumber of significant pressure fluctuation cycles	NAP	80000	\$		
Average temperature to be considered in step 4 of the screening procedure		200	-	*c	
🚰 General 🚳 Geometry 🖉 Tests 📦 Location 🔒 Jacket 🛰 Wind 🏭	Seism 🚦	Loads	Fatigu	Lining 📝 Reporting 🔎 O	ptions • •

Now the user can create a "fatigue screening" component as an additional component. In the window that appears all the details on a component level shall be provided.

Sant'Ambrogio NextGen - End User Manual

😥 Essentials	General					
🚰 General	Side to consider in the calculations	Internal V <>	6			
Design conditions	Name / Position	Fatigue screening #1				
Fatigue	Material	SA-516 70 - Plate Database Edit				
Reporting	Fatigue curve family	Carbon, Low Alloy, Series 4XX, High Alloy, a 🗸				
	Fatigue					
	Type of construction	Integral construction V <>	1			
	Component type	All other components V <>				
	Step 5					
	Step 6					
	Step 7					
	Step 8					

The creation of the "fatigue screening" component is critical, since no calculations will be made by only enabling fatigue screening. The user must specify important parameters like the material and the fatigue curve family of the material and only then will the calculations be made for the specified material. If the user wishes to perform a fatigue screening procedure for another component, he must create a new "fatigue screening" component.

The design conditions of the Item are reported on the form, and the user shall specify whether he wants to consider the internal or the external side of the design conditions. The user may also choose to adopt design conditions different from the Item, by changing the default values in the window (that correspond to the Item design conditions).

👷 Essentials	Conditions name			onditions	
General	Internal pressure design temperature	т	200	÷ •c	
Design conditions	Internal pressure	P	10	MPa	
Fatigue	External pressure design temperature	TExt	50	÷ •c	
Reporting	External pressure	PExt	1	MPa	6

The user may choose to activate or deactivate the steps 5 to 8 of the fatigue screening procedure according to its needs.

Step 5							
Maximum temperature difference between any two adjacent points of the vessel	ΔΤΝ	30	¢	•c			0
Number of cycles corresponding to ΔTN	ΝΔΤΝ	10000					
Average temperature to be considered in step 5 of the screening procedure		150	\$	°C			0
Step 6		\square					
Maximum range of temperature difference fluctuation between any two adjacent points of the vessel	ΔTR	20	-	*C			0
Number of significant cycles corresponding to ΔTR	NATR	10000					0
Average temperature to be considered in step 6 of the screening procedure		150	-	°C			0
Step 7							
Material of adjacent component		SA-240 304 - Plate			Database	Edit	
Adjacent component: fatigue curve family		Series 3XX High Alloy Steels, Nickel–Chrom \sim				~ < >	
Adjacent component: type of construction		Integral construction V			< >	0	
Adjacent component: component type		All other components v			< >	0	
Range of temperature difference fluctuation between any two adjacent points of different materials	ΔTM	15	٥	•c			0
Number of significant cycles corresponding to ΔTM	ΝΔΤΜ	10000	\$				
Average temperature to be considered in step 7 of the screening procedure		150	•	*C			0
Step 8							
Equivalent stress range computed from the specified full range of mechanical loads	ΔSML	50	¢	MPa			0
Number of significant cycles corresponding to ΔSML	NΔS	200000	٢				0
Average temperature to be considered in step 8 of the screening procedure		150	•	*C			0

In the example provided above all steps were activated. Almost all properties under this section have a contextual help ("?" button) that shows clarifications from the calculation code and/or how the data will be used in the calculations.

Calculation occurs in real time once all the inputs are inserted. The user can have a glance at the preliminary report for seeing the most important results of the calculation.

Preliminary report: Fatigue screening		
According to: Asme VIII Div. 2 Ed. 2021 Asme Section VIII Division 2 5.5.2.4		
Internal pressure		
Step 2		
Factor for a fatigue analysis screening based on Method B	C1	3.00000
Factor for a fatigue analysis screening based on Method B	C2	2.00000
Step 3		
Allowable stress based on the material of construction and design temperature	S	150.00 MPa
	C1S	450.00 MPa
Number of cycles from the applicable design fatigue curve evaluated at a stress amplitude of C1S	N(C15)	1 846.0000
	NA	FP ≤ 1E6: Ok
	NΔFP	N(C1S): Ke
Step 4		
Minimum value of a significant pressure fluctuation	∆Pmin	1.90 MPa
	NZ	P ≤ 1E6: Ok
$\Delta P \leq \Delta Pmin$: Yes, the pressure fluct	tuation is no	t significant
Step 5		
Stress amplitude from the applicable design fatigue curve evaluated at NΔTN cycles	Sa(N∆TN)	266.60 MPa
	NAT	N ≤ 1E6: Ok
ΔTN ≤ So	(NATN)/(Ca	?-Eym·α): Ok
Step 6		
Minimum value of a significant temperature difference fluctuation	ATRmin	16.90 °C
Stress amplitude from the applicable design fatigue curve evaluated at NΔTR cycles	Sa(N∆TR)	266.60 MPa
	NA	R ≤ 1E6: Ok
$\Delta TR \leq \Delta TRmin$: No, the temperature difference	fluctuation i	s significant
ATR < S	a(NATR)/(Ca	-Evm-a): Ok

The full detailed calculation is described in the final report.