Wind load definition

In NextGen it is possible to calculate the wind profile automatically using standards such as Eurocodes, ASCE, UBC or define a custom profile.

Online version: https://nextgen.sant-ambrogio.it/KB783486 Latest update: 23 ago 2024

Vertical vessels on supports such as skirts and legs can be affected by the wind and can transfer substantial loads to the base. In NextGen it is possible to calculate the wind profile automatically using the following standards:

- Eurocode 1 EN 1991-1-4
- Uniform Building Code (UBC 97)
- ASCE/SEI, IBC
- IS 875 (Part 3)
- NTC

It is also possible to manually enter a wind profile, for those cases where the calculation is to be performed with a standard not supported by NextGen.

Filling in the wind and earthquake data only influences the calculation if supports are present. Pressure components are generally not influenced by external loads, except in some specific cases.

Definition using a known Standard

Inside the *Item* properties Item > Properties, in the *Wind* section there is a list from which to choose the Code according to which you want NextGen to calculate the load due to the wind.

Item Properties	20 20
Vessel 📱 Design conditions	$\longleftrightarrow \mathbf{\overline{a}}$
Wind profile calculation method	Eurocode 1 EN1991-1-4:2005 <->
National Annex	Generic V <> @
Terrain category	0 ~ < > @
Roughness length z0	🛨 m 🔒
Minimum height zmin	🔹 m 🔒
Fundamental value of the basic wind velocity vb,0	15 m/s
Air density p	1.25 🗼 kg/m³ 💿
Directional factor c dir	1 🗘
Seasonal factor c season	1 🗘
Orography factor co	1 🗘
Turbulence factor kl	1 文
External pressure coefficient cpe	1 🗘
Altitude A	0 🗘 m
Exposure factor ce	0 🗼 🔒
😭 General 🛱 Geometry 🔰 Tests 🎯 Location 🛰 Wind 🛂 Seism 🚚 Loads 👚 Lifting	🏕 Fatigue 📕 Lining 📝 Reporting 🔑 Options 🔹 🔹 🔻
	Update Cancel

In the example, a wind calculation according to Eurocode 1 has been set and with a basic wind speed of 15

m/s.

Refer to the contextual help for more information on each of the input data

Click on *Update* to save the changes. Then, moving on to the profile view in *Item > Wind*, you can see that the program has set the wind thrust at different altitudes as established by the standard, limiting itself to the height reached by the equipment.

If the vessel is placed at an offset from the ground, this distance can be set in the properties of the *Item*, in particular in Item > Properties > Geometry > Distance from reference line

Manual definition of the wind profile

In the window relating to the properties of the *Item* seen previously, the profile called *Custom* must be chosen.

Then, by choosing Item > Wind it is possible to define a series of manual points for the graph, indicating a series of elevation-pressure pairs.

Load combinations

The stress due to the wind is used by the calculation of the supports, through the scenarios defined as *Load Combinations* in Item > Load Combinations.

For each *Load Combination* it is possible to consider or not the wind and define a coefficient.

Conoral	on details				Proseuros	
	Derform colu	ma structural ana	Default for lifting		Pressure factor	1.00
enabled	Perform column structural analysis 📃 Default for lifting			Pressure factor:		
Name:	Operating				Pressure type:	Pi
Condition:	Design conditio	ns		-	Static head factor:	1.00
Туре:	Operating			-	Static head type:	Phi
Allowables					Weights	
Tensile allowal	ble factor:		1.00 🜩		Dead weight factor:	1.00 🜩
Tensile allowal	ble type:		Design	•	Dead weight type:	Gmax
Compressive a	llowable factor:		1.00		Live weight factor:	1.00 🜩 x L
Compressive a	llowable type:		Design	•	Insulation factor:	1.00 🜩
Anchor bolts allowable factor:			Other loads			
Calculation temperature for anchor bolts: 20 🔹 °C			Horizontal seism factor:	1.00 🜩 x Eh		
External actions and foundation loads on supports			Vertical seism factor:	1.00 🔹 x Ev		
Override au	tomatic calculatio	on .			Period of vibration:	0.171 💲 💼
Horizontal force	e: (X Axis)	0.0	¢ N		Wind factor:	1.00 🔹 x W
/ertical force:		0.0	‡ N		Snow factor:	1.00 🔹 x S
Moment:	(My)	0.0	N·m		Sum wind and seism effects when both	are set
Override cer	nter of gravity cal	culation			Nozzle loads factor:	1.00 🔹 x F
X: 0.0	0 ‡ Y:	0.00	¢ Z: 1749.02 ¢ mm	1	Combination method of nozzle loads:	AD 2000 S 3/0 Annex 2
				Default direction of resultant vertical force (AD2000 only): Downward		
					External forces and moments factor:	1.00 🔹 x F2
			Combination method of external forces an	d moments: SRSS		
					Default direction of resultant vertical force	(SRSS only): Downward

Resistant profile

NextGen automatically calculates the wind resistant profile. As usual, it is possible to intervene on this calculation by acting on the components, in their *External loads* category.

🗞 Cylindrical shell "Cylindrical shell #1"				
🚖 Essentials	Area exposed to wind	1.824 文 m² 😭		
😭 General	Shape coefficient	cf 1	0	
Design conditions				
🛱 Geometry				
8 Ligaments				
∫ fx External loads				
📣 Weight				
Reporting				

You can customize both the surface exposed to the wind and the shape coefficient.

Report

In the initial summary pages of the calculation report, if set to active, there is the section containing the wind calculation:

Wind profile calculation						
According to: Eurocode 1 EN1991-1-4:2005						
Wederselle						
Wind profile					Ormatia	
National Annex:					Generic	
Terrain category:					0	
Fundamental value of the ba	sic wind velocity			vb0	= 15.00 m/s	
Directional factor				cdir	= 1.00	
Seasonal factor				cseasonal	= 1.00	
Altitude factor				calt	= 1.00000	
Basic wind velocity				vb	= 15.00 m/s	
Orography factor				corography	= 1.00	
Turbulence factor				kl	= 1.00	
Air density				ρ	= 1.25 kg/m ³	
External pressure coefficient				cpe	= 1.000	
Roughness length				z0	= 0.003 m	
Minimum height				zmin	= 1.00 m	
				z0,11	= 0.05 m	
Terrain factor $k_r = 0.19 \cdot (\frac{z_0}{z_{0,II}})^{0.07} = 0.156$					= 0.15604	
Roughness factor $c_r = k_r \cdot ln(\frac{z}{z_0})$ =					= *	
Mean wind velocity				$v_m = c_r \cdot c_o \cdot v_b$	= *	
Turbulence intensity	Turbulence intensity $I_v = \frac{k_I}{c_o \cdot ln(z/z_0)} = *$					
Wind pressure $q_p = (1 + 7 \cdot I_\nu) \cdot \frac{1}{2} \cdot \rho \cdot v_m^2$ = *						
Heigh	Roughness factor	Mean wind velocity	Turbulence intensity	Windpressure		
Z	cr	vm	lv	qp		
01	n 0.90643	13.60 m/s	0.17214	254.77 N/m ²		
1.00 ו	n 0.90643	13.60 m/s	0.17214	254.77 N/m ²		
2.00	n 1.01459	15.22 m/s	0.15379	300.60 N/m ²		
3.00 1	n 1.07786	16.17 m/s	0.14476	328.93 N/m ²]	

The support calculation, for the *Load Combinations* in which the wind is present, will show the relative load:

Foundation loads			
Shear (wind)	Sw = c_wp · W_p · A	=	695 N
Shear (earthquake)	Se = c_sh · Sh · W_e	=	0 N
Total force parallel to x axis due to local loads	Fx	=	0 N
Total force parallel to y axis due to local loads	Fy	=	0 N
Total force parallel to z axis due to local loads (positive upward)	Fz	=	0 N
Moment (wind)	<mark>Mw = Sw · hc</mark>	=	1 243.2 N·m
Moment (earthquake)	Me = Se · hg	=	0 N·m
Total moment about x axis due to local loads	Mx	=	0 N·m
Total moment about y axis due to local loads	My	=	0 N·m
Total moment about z axis due to local loads	Mz	=	0 N·m
Vertical load due to snow	S=s·a	=	0 N
Vertical load	VL = We · (g + c_sv · Sv) - Fz + c_sn·S	=	6 002 N
Horizontal load	HL = max(Sw; Se) +√(Fx²+Fy²)	=	695 N