Definizione del carico dovuto al vento

In NextGen è possibile calcolare il profilo del vento in maniera automatica utilizzando standard quali Eurocodici, ASCE, UBC oppure definire un profilo personalizzato. Versione online: https://nextgen.sant-ambrogio.it/KB783486 Ultimo aggiornamento: 23 ago 2024

Apparecchi verticali su supporti quali gonne e gambe possono subire l'effetto del vento e riportare alla base carichi anche sostanziali. In NextGen è possibile calcolare il profilo del vento in maniera automatica utilizzando i seguenti standard:

- Eurocode 1 EN 1991-1-4
- Uniform Building Code (UBC 97)
- ASCE/SEI, IBC
- IS 875 (Part 3)
- NTC

È inoltre possibile inserire manualmente un profilo del vento, per quei casi in cui il calcolo è da eseguire con uno standard non supportato da NextGen

La compilazione dei dati relativi a vento e sisma influenza il calcolo solamente se sono presenti dei supporti. I componenti a pressione non sono in genere influenzati dai carichi esterni, se non in alcuni casi specifici.

Definizione mediante standard

All'interno dell proprietà dell'*Item* Item > Properties, nella sezione Wind è presente una lista dalla quale scegliere il codice secondo cui si vuole far calcolare a NextGen il carico dovuto al vento.

Item Properties	ß
Vessel 🖟 Design conditions	$\leftrightarrow \mathbf{F}$
Wind profile calculation method	Eurocode 1 EN1991-1-4:2005 <->
National Annex	Generic V <> 🥥
Terrain category	0 ~ < > @
Roughness length z0	📩 m 🔒
Minimum height zmin	📩 m 🔒
Fundamental value of the basic wind velocity vb,0	15 m/s
Air density p	1.25 kg/m³
Directional factor c dir	
Seasonal factor c season	1
Orography factor co	
Turbulence factor kl	1
External pressure coefficient cpe	1
Altitude A	0 🛉 m
Exposure factor ce	0 🔹 💼
🚰 General 🛱 Geometry 👌 Tests 🌒 Location 🛰 Wind 🚮 Seism 👯 Loads 🍸 Lifting	🏕 Fatigue 📘 Lining 📝 Reporting 🤌 Options 🛛 🔹 🕈 🗮
	Update 🧐 Cancel

Nell'esempio è stato impostato un calcolo del vento secondo Eurocodice 1 ed è stata impostata una velocità base del vento pari a 15 m/s

Far riferimento agli help contestuali per maggiori informazioni su ciascuno dei dati di input

Cliccare su *Update* per salvare i cambiamenti. Passando poi alla visualizzazione del profilo in *Item > Wind*, si può notare che il programma ha impostato la spinta del vento a differenti quote secondo quanto stabilito dalla norma, limitandosi alla quota raggiunta dall'apparecchio.

Se l'apparecchio è collocato ad un offset dal terreno, tale distanza è impostabile nelle proprietà dell'*Item*, in particolare in Item > Properties > Geometry > Distance from reference line

Definizione manuale del profilo del vento

Nella finestra relativa alle proprietà dell'Item vista in precedenza, va scelto il profilo denominato Custom.

Quindi, scegliendo Item > Wind è possibile definire una serie di punti manuali per il grafico, indicando una serie di coppie elevazione-pressione.

Combinazioni di carico

La sollecitazione dovuta al vento è recepita dal calcolo dei supporti, mediante gli scenari definiti come *Load Combinations* in Item > Load Combinations.

Per ogni Load Combination è possibile considerare o meno il vento e definirne un coefficiente.

oad combinatio	on details				_			
General					Pressures			
Enabled	Perform colu	mn structural an	alysis	Default for lifting	Pressure factor:	1.00 ≑		
Name:	Operating				Pressure type:	Pi		•
Condition:	Design conditio	ns		•	Static head factor:	1.00 🌲		
Type:	Operating			•	Static head type:	Phi		
51								
Allowables					Weights			
Tensile allowa	ble factor:		1.00		Dead weight factor:	1.00 🜩		
Tensile allowa	ble type:		Design		Dead weight type:	Gmax		[
Compressive a	llowable factor:		1.00		Live weight factor:	1.00 🔹 🗴	L	
Compressive e			Deview			100		
Compressive allowable type: Design			insulation factor:	1.00				
Anchor bolts allowable factor:			Other loads	Other loads				
Calculation te	mperature for anc	hor bolts:	20	°C	Horizontal seism factor:	1.00 🌻	x Eh	
External actio	ns and foundatio	n loads on supp	orts		Vertical seism factor:	1.00 🔹	x Ev	
Override au	tomatic calculatic	on			Period of vibration:	0.171 💲	S 🔒	
Horizontal forc	e: (X Axis)	0.0	‡ N		Wind factor:	1.00 🔹	хW	
/ertical force:		0.0	\$ N		Snow factor:	1.00 🌲	x S	
Moment:	(My)	0.0	‡ N⋅m		Sum wind and seism effects when bo	oth are set		
Override ce	nter of gravity cal	culation			Nozzle loads factor:	1.00 🜩	x F	
X: 0.0	0 ‡ Y:	0.00	‡ Z:	1749.02 ‡ mm	Combination method of nozzle loads:		AD 2000 S 3/0 Ann	ex 2
					Default direction of resultant vertical for	rce (AD2000 only):	Downward	
					External forces and moments factor:	1.00 🜲	x F2	
					Combination method of external forces	and moments:	SRSS	
					Default direction of resultant vertical for	rce (SRSS only):	Downward	

Profilo resistente

NextGen calcola automaticamente il profilo resistente al vento. Come di consueto è possibile intervenire su questo calcolo agendo sui componenti, nella loro categoria *External loads*.

💦 Cylindrical shell "Cylindrical shell #1"						
🚖 Essentials	Area exposed to wind	1.824 💼 m² 🔒				
😭 General	Shape coefficient	cf 1				
Design conditions						
🛱 Geometry						
8 Ligaments						
∫s External loads						
📣 Weight						
Reporting						

Si può personalizzare sia la superficie esposta al vento sia il coefficiente di forma.

Report

Nelle pagine iniziali riepilogative del report di calcolo è presente, se definita a attiva, la sezione contenente il calcolo del vento:

T

Wind profile calculation						
	According to: Eurocode 1 EN1991-1-4:2005					
Wind profile						
National Annex:						Generic
Terrain category:						0
Fundamental value of	the basic	wind velocity			vb0	= 15.00 m/s
Directional factor		2			cdir	= 1.00
Seasonal factor					cseasonal	= 1.00
Altitude factor					calt	= 1.00000
Basic wind velocity					vb	= 15.00 m/s
Orography factor					corography	= 1.00
Turbulence factor					kl	= 1.00
Air density					ρ	= 1.25 kg/m³
External pressure coe	fficient				сре	= 1.000
Roughness length					z0	= 0.003 m
Minimum height					zmin	= 1.00 m
					z0,II	= 0.05 m
Terrain factor				$k_r =$	$0.19 \cdot (\frac{z_0}{z_{0,II}})^{0.07}$	= 0.15604
Roughness factor					$c_r = k_r \cdot \ln(\frac{z}{z_0})$	*
Mean wind velocity					$v_m = c_r \cdot c_o \cdot v_b$	= *
Turbulence intensity	Turbulence intensity $I_v = \frac{k_I}{c_o \cdot ln(z/z_0)} =$					
Wind pressure				$q_p = (1 + 7)^2$	$(7 \cdot I_{\nu}) \cdot \frac{1}{2} \cdot \rho \cdot v_m^2$	= *
	Height	Roughness factor	Mean wind velocity	Turbulence intensity	Windpressure	
	z	cr	vm	lv	qp	
	0 m	0.90643	13.60 m/s	0.17214	254.77 N/m ²	
	1.00 m	0.90643	13.60 m/s	0.17214	254.77 N/m ²	
	2.00 m	1.01459	15.22 m/s	0.15379	300.60 N/m ²	
	3.00 m	1.07786	16.17 m/s	0.14476	328.93 N/m ²]

Il calcolo del supporto, per le Load Combinations in cui il vento è presente, mostrerà il carico relativo:

Foundation loads			
Shear (wind)	Sw = c_wp · W_p · A	=	695 N
Shear (earthquake)	Se = c_sh · Sh · W_e	=	0 N
Total force parallel to x axis due to local loads	Fx	=	0 N
Total force parallel to y axis due to local loads	Fy	=	0 N
Total force parallel to z axis due to local loads (positive upward)	Fz	=	0 N
Moment (wind)	<mark>Mw = Sw · hc</mark>	=	1 243.2 N·m
Moment (earthquake)	Me = Se · hg	=	0 N·m
Total moment about x axis due to local loads	Mx	=	0 N·m
Total moment about y axis due to local loads	My	=	0 N·m
Total moment about z axis due to local loads	Mz	=	0 N·m
Vertical load due to snow	S=s·a	=	0 N
Vertical load	VL = We · (g + c_sv · Sv) - Fz + c_sn·S	=	6 002 N
Horizontal load	HL = max(Sw; Se) +√(Fx²+Fy²)	=	695 N