Detailed fatigue assessment according to EN 13445-3 Clause 18 and AD 2000 S 2

How to perform fatigue analysis with the detailed approach proposed in EN 13445 Clause 18 and AD 2000 S 2.

Online version: https://nextgen.sant-ambrogio.it/KB894184 Latest update: 31 lug 2024

With NextGen it is possible to perform a detailed fatigue calculation for projects according to the EN 13445 and AD 2000 standards.

It is important to underline that in order to perform a detailed fatigue analysis <mark>it is essential to have data deriving from a finite element analysis (FEA)</mark>. This calculation must be performed with a specific software, different from NextGen. Sant'Ambrogio does not offer this type of program nor can it support its choice and use.

For the simplified fatigue analysis, described in the chapters EN 13445 Clause 17 and AD 20000 S 1 there is a dedicated article. The simplified fatigue analysis does not require a supporting FEA.

The calculation is essentially divided into two parts:

- The definition at *Item* level of the calculation conditions and the number of cycles required
- The definition of one or more analyses relating to specific points of the equipment

In this article, examples relating to EN 13445 are shown, but the same considerations apply to AD 2000. See the respective chapters of the standards for more information regarding the calculation implementations.

Definition of the item properties

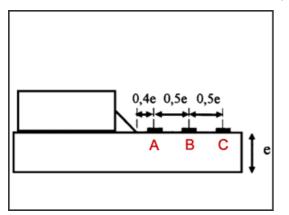
The general definition of the calculation takes place in the properties of the *Item* (File > Item properties > Fatigue). The data must be filled in as follows, enabling the calculation using the appropriate checkbox:

Item Properties	23
🗬 Vessel 📳 Design conditions	$\longleftrightarrow \Xi$
Enable fatigue assessment	
Number of load conditions	
Pressure range (condition 1)	1.2 MPa
Minimum temperature during a cycle (condition 1)	100 € °C
Maximum temperature during a cycle (condition 1)	250 € °C
Number of cycles required (condition 1)	1500
Load variation type (condition 1)	Pressure and temperature
🚰 General 🐯 Geometry 🔮 Tests 🚳 Location 🔖 Wind 🏰 Seism 💐 Loads 👚 Li	fting 🚰 Fatigue
	🚽 Update 🏼 🌱 Cancel

Warning: setting these properties alone does not produce any checks. In the absence of the following steps, no fatigue analysis will be performed.

Detailed fatigue analysis definition

From the ribbon, select the item related to Detailed fatigue assessment:


Forces and moments Ladder	🔁 Rectan	gular vessel	Componen	t Iter		Close it	em
Platform	M. Deta	iled fatigue a	assessment		ort		
sories 🕞	🕼 Fatig	gue screening	9	-	5	View	5

This item will be added in *Desktop view* mode, since it does not have a 3D representation.

The data compilation occurs as for a normal component. After defining the name and material, in the *Fatigue* section the characteristics of the analysis must be defined.

🚰 General	Component thickness at verification point	5 🛖 mm
Design conditions	Load condition to which this calculation applies	1 ~ (>)
🕂 Fatigue	Component type	Welded V <>
Reporting	Loading type	Mechanical only V
	Loading condition	Constant amplitude V < >
	Weld class	100 ~ < >
	Type of stress extrapolation near discontinuity	High bending stress, quadratic extrapol \checkmark (> 🥡
	Equivalent stress at point A	100 🐑 MPa
	Equivalent stress at point B	150 🐑 MPa
	Equivalent stress at point C	200 💭 MPa

There are different options for choosing the stress extrapolation method. The required values must be taken from the FEA. The program supports the user by indicating at what distance the stress values should be read from the finite element analysis:

The detailed fatigue analysis is a more complex matter than the calculation by formulae of the components available in NextGen. Please refer to the respective standards for further information.

As with a normal 3D component, the detailed fatigue analysis has its own calculation report:

Detailed fatigue assessment -	Detailed fatigue assessment #1		
According to: EN 13445 Ed. 2	021 Issue 1 (2021-04), Clause 18		
Design data			
Component type: Welded			
Loading type: Mechanical only			
Loading condition: Constant amplitude			
Weld class		=	100
Type of stress extrapolation near discontinuity: High bending stress, q	uadratic extrapolation		
Equivalent stress at point A	σΑ	=	100.00 MPa
Equivalent stress at point B	σΒ	=	150.00 MPa
Equivalent stress at point C	σC	=	200.00 MPa
Nominal thickness	en	=	5.00 mm
Parameter xA	xA=0.4·e	=	2.00 mm
Parameter xB	xB=0.9·e	=	4.50 mm
Parameter xC	xC=1.4·e	=	7.00 mm
Parameter a	a=σA·xB²-σB·xA²	=	1 425 N
Parameter b	b=oA·xC²-oC·xA²	=	4100 N
Parameter c	c=xA·xB²-xB·xA²	=	22.5 mm ³
Parameter d	d=xA·xC²-xC·xA²	=	70.0 mm³
Parameter e	e=xB ² -xA ²	=	16.2 mm ²
Parameter f	f=xC ² -xA ²	=	45.0 mm ²
Equivalent structural stress range	Δσeq(FEA)=(a/c-b/d)/(e/c-f/d)	=	60.00 MPa
Material: P265GH (EN 10028-2) - Plate (t ≤ 16.00 mm) - No.:	: 1.0425		
0.2% yield strength at design temperature	Rp0.2/T	=	188.00 MPa
Tensile strength	Rm	=	0 MPa
Load condition 1, load details			
Design pressure	Р	=	1.50 MPa
Pressure range	ΔΡ	=	1.20 MPa
Minimum operating temperature during cycle	Tmin	=	100.00 °C
Maximum operating temperature during cycle	Tmax	=	250.00 °C
Assumed mean cycle temperature	T*=0.75·Tmax+0.25·Tmin	=	212.50 °C
Number of required fatigue cycles	Nreq	=	1 500
Tensile strength	Rm/20	=	410.00 MPa
Yield strength	Rp/T*	=	200.75 MPa
Mechanical loading correction factor in elasto-plastic conditions	ke	=	1.00000
Thermal loading correction factor in elasto-plastic conditions	kv	=	1.00000
Equivalent structural stress range	Δσeq=Δσeq(FEA)·ke·kv	=	60.00 MPa
Temperature correction factor	$f_{T^*} = 1,03-1,5\cdot 10^{-4}\cdot T^* - 1,5\cdot 10^{-6}\cdot T^{*2}$	=	0.93039
Thickness correction factor	few	=	1.00000
Overall correction factor	fw=few-fT*	=	0.93039

In the summary in the calculation report of the entire device, the detailed analyses are combined with the simplified ones, indicating any errors in red:

Fatigue assessment summ	hary		
Loading condition			
1: ΔΡ=1.20 MPa - Tmin=100.00 °C - Tmax=250.00 °C - Required cycles=1500			
Number of equivalent full pressure cycles	neq=Σ ni·(ΔPi/F	^o) ³ =	76
			neq ≤ 500: K
Simplified fatigue assessment according to:	EN13445-3 Clause 17	7	-
Load condition, component, detail	Required cycles	Allowable cycles	Damage index
1, 2 - Main shell, Longitudinal butt weld	1500	1423	1.05
1, 2 - Main shell, Longitudinal butt weld 1, 2 - Main shell, Circumferential butt weld	1500 1500	1423 3941	
	1500 N13445-3 Clause 18	3941	0.38
1, 2 - Main shell, Circumferential butt weld	1500		1.05 0.38 Damage index