Analisi a fatica dettagliata secondo EN 13445-3 Clause 18 e AD 2000 S 2

Come eseguire l'analisi a fatica con l'approccio dettagliato proposto nel capitolo 18 della EN 13445 e nella S 2 dell'AD 2000.

Versione online: https://nextgen.sant-ambrogio.it/KB894184 Ultimo aggiornamento: 31 lug 2024

Con NextGen è possibile eseguire un calcolo a fatica dettagliato per progetti secondo le normative EN 13445 ed AD 2000.

È importante sottolineare che per poter eseguire un'analisi dettagliata a fatica <mark>è indispensabile disporre di dati derivanti da un calcolo ad elementi finiti (FEA)</mark>. Tale calcolo deve essere eseguito con un software apposito, diverso da NextGen. Sant'Ambrogio non offre questo tipo di programma né può supportare nella sua scelta e utilizzo.

Per l'analisi a fatica semplificata, descritta nei capitoli EN 13445 Clause 17 e AD 20000 S 1 è presente un articolo dedicato. L'analisi a fatica semplificata non necessita di una FEA a supporto.

Il calcolo si divide sostanzialmente in due parti:

- La definizione a livello di Item degli estremi di calcolo e del numero di cicli richiesti
- La definizione di una o più analisi relative a punti precisi dell'apparecchio

In questo articolo sono mostrati esempi relativi ad EN 13445, ma le stesse considerazioni si applicano a AD 2000. Si vedano i rispettivi capitoli delle normative per maggiori informazioni riguardo le implementazioni di calcolo.

Definizione delle proprietà dell'item

La definizione generale del calcolo avviene nelle proprietà dell'*Item* (File > Item properties > Fatigue). I dati vanno compilati come segue, abilitando il calcolo mediante l'apposita casella di spunta:

Item Properties	ß	
Vessel 🖉 Design conditions	$\longleftrightarrow =$	
Enable fatigue assessment		
Number of load conditions		
Pressure range (condition 1)	1.2 NPa	
Minimum temperature during a cycle (condition 1)	100 € °C	
Maximum temperature during a cycle (condition 1)	250 € °C	
Number of cycles required (condition 1)	1500	
Load variation type (condition 1)	Pressure and temperature	
🚰 General 🐯 Geometry 🔮 Tests 🚳 Location 🛰 Wind 🏰 Seism 💐 Loads 🁚 Li	fting 🚰 Fatigue	
	Update 🏼 🌱 Cancel	

Attenzione: l'impostazione di queste proprietà da sola <mark>non produce alcuna verifica</mark>. In mancanza dei passaggi seguenti, non verrà eseguita nessuna analisi a fatica.

Definizione dell'analisi a fatica dettagliata

Dalla barra multifunzione, selezionare l'elemento relativo al Detailed fatigue assessment:

Questo elemento verrà aggiunto in modalità *Desktop view*, poiché non dispone di una rappresentazione 3D.

La compilazione dei dati avviene come per un normale componente. Dopo aver definito nome e materiale, nella sezione *Fatigue* vanno definite le caratteristiche dell'analisi.

🚰 General	Component thickness at verification point	5 mm
🚺 Design conditions	Load condition to which this calculation applies	1 ~ ~ @
🔂 Fatigue	Component type	Welded V <>
Reporting	Loading type	Mechanical only V < >
	Loading condition	Constant amplitude v < >
	Weld class	100 ~ < >
	Type of stress extrapolation near discontinuity	High bending stress, quadratic extrapol 🗸 < > 🕡
	Equivalent stress at point A	100 🜩 MPa
	Equivalent stress at point B	150 🜩 MPa
	Equivalent stress at point C	200 🜩 MPa

Sono presenti differenti opzioni per la scelta del metodo di estrapolazione dello stress. I valori richiesti vanno prelevati dalla FEA. Il programma supporta l'utente indicando a quale distanza vanno letti i valori di stress dall'analisi ad elementi finiti:

L'analisi a fatica dettagliata è una materia più complessa rispetto al calcolo by formulae dei componenti disponibile in NextGen. Si rimanda alle rispettive normative per approfondimenti.

Così come avviene per un normale componente 3D, l'analisi a fatica dettagliata dispone di un suo report di calcolo:

Detailed fatigue assessment - Detailed fatigue assessment #1						
According to: EN 13445 Ed. 2	According to: EN 13445 Ed. 2021 Issue 1 (2021-04), Clause 18					
Design data						
Component type: Welded						
Loading type: Mechanical only						
Loading condition: Constant amplitude						
Weld class		=	100			
Type of stress extrapolation near discontinuity: High bending stress, q	uadratic extrapolation					
Equivalent stress at point A	σΑ	=	100.00 MPa			
Equivalent stress at point B	σΒ	=	150.00 MPa			
Equivalent stress at point C	σC	=	200.00 MPa			
Nominal thickness	en	=	5.00 mm			
Parameter xA	xA=0.4·e	=	2.00 mm			
Parameter xB	xB=0.9·e	=	4.50 mm			
Parameter xC	xC=1.4·e	=	7.00 mm			
Parameter a	a=σA·xB²-σB·xA²	=	1 425 N			
Parameter b	b=oA·xC²-oC·xA²	=	4100 N			
Parameter c	c=xA·xB²-xB·xA²	=	22.5 mm ³			
Parameter d	d=xA·xC²-xC·xA²	=	70.0 mm ³			
Parameter e	e=xB ² -xA ²	=	16.2 mm ²			
Parameter f	f=xC ² -xA ²	=	45.0 mm ²			
Equivalent structural stress range	$\Delta \sigma eq(FEA) = (a/c-b/d)/(e/c-f/d)$	=	60.00 MPa			
Material: P265GH (EN 10028-2) - Plate (t ≤ 16.00 mm) - No.	: 1.0425					
0.2% yield strength at design temperature	Rp0.2/T	=	188.00 MPa			
Tensile strength	Rm	=	0 MPa			
Load condition 1, load details						
Design pressure	P	=	1.50 MPa			
Pressure range	ΔΡ	=	1.20 MPa			
Minimum operating temperature during cycle	Tmin	=	100.00 °C			
Maximum operating temperature during cycle	Tmax	=	250.00 °C			
Assumed mean cycle temperature	T*=0.75·Tmax+0.25·Tmin	=	212.50 °C			
Number of required fatigue cycles	Nreq	=	1 500			
Tensile strength	Rm/20	=	410.00 MPa			
Yield strength	Rp/T*	=	200.75 MPa			
Mechanical loading correction factor in elasto-plastic conditions	ke	=	1.00000			
Thermal loading correction factor in elasto-plastic conditions	kv	=	1.00000			
Equivalent structural stress range	Δσeq=Δσeq(FEA)·ke-kv	=	60.00 MPa			
Temperature correction factor	$f_{T^*} = 1,03-1,5\cdot 10^{-4}\cdot T^* - 1,5\cdot 10^{-6}\cdot T^{*2}$	=	0.93039			
Thickness correction factor	few	=	1.00000			
Overall correction factor	fw=few·fT*	=	0.93039			

Nel riepilogo presente nel report di calcolo dell'intero apparecchio, le analisi dettagliate vengono combinate con quelle semplificate, indicando eventuali errori in rosso:

Fatigue assessment summary								
Loading condition								
1: ΔΡ=1.20 MPa - Tmin=100.00 °C - Tmax=250.00 °C - Required cycles=1500								
Number of equivalent full pressure cycles n	neq=Σ ni·(ΔPi/P) ³ = 768							
		I I	neq ≤ 500: Ko					
Simplified fatigue assessment according to: EN13445-3 Clause 17								
Load condition, component, detail	Required cycles	Allowable cycles	Damage index					
1, 2 - Main shell, Longitudinal butt weld	1500	1423	1.054					
1, 2 - Main shell, Circumferential butt weld	1500	3941	0.381					
Detailed fatigue assessment according to: EN13445-3 Clause 18								
Load condition, component	Required cycles	Allowable cycles	Damage index					
1, 4- Detailed fatigue assessment #1	1500	Unlimited	0.000					
Allowable number of cycles: 1423 (limited by Load condition 1, 2 - Main shell, Longitudinal bu	tt weld)							